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LIST OF SYMBOLS

Greek letters are used to denote measured quantities and Roman letters denote true quantities.

linear operator

K (T) kerei of the operator JI

Ui () fluctuating velocity component

Qi (x) measured fluctuating velocity component

R..(q ) true velocity correlation; " -

15q ( ) measured velocitj correlation

1b(T) 'auto-correlation' of the kernel

S(k) power sensitivity spectrum of .11 (the probe)

El(k) Fourier transform of Ri. (j )

r 1(k) Fourier transform of f/j (F)

E (k) Spectral density of I < Ui >av with respect to wave-number magnitude
9 av

f(r) longitudinal correlation of turbulence

g (r) lateral correlation of turbulence

E,(k,) true 'one-dimensional' velocity spectrum

PrI(k ) measured 'one-dimensional' velocity spectrum

8() Dirac function

8' ( ) derivative of Ditac function

W( a) hot-wire length correction weight function for isotropic case

2 l length of the hot-wire

6 (i') fluctuating temperature

P' r) fluctuating density

T (.') temperature or density correlation

P ( ) Fourier transform of T ( ) o

G(k) spectral density of <0 a or <pz>avwith respect to wave-number magnitude

Gjk1) true 'one-dimensional' density or temperature spectrum

"1/(k1) measured 'one-dimensional' density or temperature spectrum

V PREVIOUS PAGE
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/8(r) measured temperature or density correlation

B(Y) light intensity falling on photographic plate

h(Y) non-dimensional light intensity

Jo(r) Bessel function of zero order

f(x) Gamma function

B (,y) Beta function

A the point of intersection of the asymptotes of measured 'one-dimensional' spectrum, when the

three-dimensional spectrum is "k- n

I definite integral f(sin k 31 ) [ A d 2 Ak 3 3/2(
• " L k z k + k2J '
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INFLUENCE OF RESOLVING POWER ON MEASUREMENT

OF CORRELATIONS AND SPECTRA OF RANDOM FIELDS

by

Mahinder S. Uberoi and Leslie S. G. Kovasznay

Johns Hopkins University
Baltimore, Maryland

I. INTRODUCTION

1. The experimental techniques used to measure correlations and spectra of random field (e.g.

turbulence) use probes with finite extent in space and finite resolution in time.The correlations and spectra

are here considered as functions of space variables and time apFcars as a parameter. We assume that the

probe gives faithful response in time and we are concerned with the influence of spatial resolving powee

of the probe on the measurements of correlations and spectra. Assuming linear response we c~n consider the

probe as a linear operator which maps one random field into another. The problem is to find functional re-

lations between the correlations and spectra of the mapped field to those of the original field. We con-

sider a three-dimensional random vector field with application to turbulence in view; howeve,, from the

mathematical point of view the method can be generalized to tensor fields of more than three variables.
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II. GENERAL TREATMENT

U (7) is a random vector field, statistically homogeneous and infinite in extent. 11 is the linear

operator corresponding to the probe which maps the random field i (-x) into another random field 2i (x).
The operator is invariant under a shift in the origin of space.

Ai ui  X) = ni ;)

,t Uli ( + ) = f Ii rx + )

We consider only those operators which can be expressed as a convolution on C, (x) with an arbitrary

kernel K (-), i.e.
I1 /IUi -)  fU f(F + -) K (s)d V(V

Unless otherwise noted, all integrations are over the whole range of independent variables appearing in the

symbol for the volume element. The above definition of an operator includes almost all linear operators of

interest if we include Dirac function and its derivatives as possible kernels. *

Averages are then taken over the entire range of independent variables,

1
<i (Y) >V. = lim (- P) dV)

rco r) V(r

where V(r) is the volume of a sphere of radius r. We assume < (i () >av. are all zero. Space average

may be a function of a parameter tike time, however, we omit reference to it to avoid an elaborate notation.

Ri(-) and ii(I) denote correlations of the original and the mapped field respectively.

Rii X ( >+

ii ) =><Oi (-)j(x)>av.

Eq (k) and rit-) are the spectra of (4 (x) and j (T) respectively,

_ 1 f-i-ck_'V

Eii rk) 37= z__.'db
13

870 f Pi F) ek.  ( Vf )

* The operator ., and the kernel K may be tensors of an) rank. A case where tensor operators must be

used &s the ds:ect measurement of the statistical proprtics of vorticity by a probe of finite dimensions.

€3
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with corresponding inverse relations

Rij ) f Eq i -i k. ,V (-k)

We now investigate relations between Rii (f), 3i (f), Ej1 (k) and "iF (k), the correlations and spectra

of the original and the mapped field.

'3. () <l(;X) 0 j ( x av.

The integration involving an averaging process and the two integrations with respect to t and s can be

interchanged if K is zero outside of a finite domain or if U (x-) is bounded.

A f(e ffKCMK(-)[ Urn fim. (9- + 7 -+ #+ 9),V(-x)dV( dV()(ri -- fu.

= ff K (z)K (-) Rq( + - -T) dv (-) dV (V

let r- 3- ='T

, f )= ffK () K (3 + 19 R (e -7r) d V (-) dV (7r)

Integrate first with respect to 9" and denote by tb (-r) the 'auto-co.relation' of the kernel K.

0r('r) = fK () K 0- + -r) d (-s) (2.1)

then

Aq (F) = f (Or) R. (i - -r) dV (r) (2.2)

Taking Fourier transform of the convolution of O'f) and Ri. (f)

t'i (k) S /k) E5 () (2.3)
where

S(' (V f cbiki "dV (i (2.4)

Since .,( ) is an even function, S () is real and even function of k. We call S (Ck), the power sensitivity

spectrum of .I; it gives the square of the sensitivity of the probe as a function of vector wave number.
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It is a multi-dimensioral generalization of customary frequency response in circuit analysis. The principal

difference is in the fact that time has a preferred direction; on the other hand, space does not necessarily

have such a restriction. In circuit analysis K (s) is the impulse response of the circuit and it acta only on

the 'past' of the signal.

Ill. APPLICATION TO TURBULENCE MEASUREMENTS BY HOT-WIRE ANEMOMETER

3.1 Terminology for Isotropic Turbulence

We apply the considerations of the last section to isotropic turbulence. For this purpose we intro-

duce the customary terminology. U () is the fluctuating velocity field, (') its correlation tensor, and

Eq (k) its spectral tensor. If the turbulence is isotropic Ri (') can be expressed in terms of two scalar

functions f (r) and g (r).

< U >av g r) = R,, (o, r, o)

< U? >v f (r) = R1, (r,o,o)

Rq(j is an even function of and it follows that its Fourier transform Eqj (k) is also an even and

real function of f. f(r) and g (r) are connected by the continuity equation of incompressible flow.

- - - = _

f (r) " g(r) 2 r3f

Total turbulence intensity

[ i( )= < U j' >aV - (o) dVCk

where repeated index means summation over the index. itj (k) is the spectral density of < >n in

the wave-number space. 'Three-dimensional' spectrum E (k) is the spectral density of 2i <e > with

respect to wave-number magnitude

E (k) =f- C) d-k

where do'(k) is the surface element of a sphere of radius k. If we apply the conditions of isotropy and

continuity equation of incompressible flow to hej (k) and mak: use of the definition of E (k) we find"

C)=E (k) 4[kVzS.. - kiki 3

Commonly measured 'one-dimensional' spectrum is the Fourier tralsformi of < U >with

E (k) kf)'ikr dk)

I8__ __ S'[  8i-kk .

Comnl eaued'nedmesonl setrmiteForer______o <J >t. ()



where

IE(k)(k2z +k 2)dkdA
E,(ki) =f f E,(-k)) =dk H)T 2 3 2

I-E(k) k-k ; k"2  k? +k2 +k 3.3

From which the inverse relation follows:

E(k) =2k 3 d Ik , =

hik lc 1 j kk

3.2 Measurement of 'One-Dimensional' Velocity Spectrum

A hot wire of length 2,9 is set parallel to x.; it is sensitive to U1(). The hot-ware output is pro-

portional to the integral of U(-) over a length 2tl. along the wire. We assume uniform wire temperature

distribution that results in uniform velocity response. However, non-uniform temperature distribution

offers no essential difficulty. The operator I) corresponding to the hot-wire is

il (Z) = IIU (V = fl' ds, f f U(s- , 3Z) 8 (s. ; s,) ds ,ds,

where 8 stands for a Dirac function. The operator /) maps the random field L(V') into another random field

IThe point of view adopted here is that simultaneous measurements of Vx() ere made at all points

in space and we represent these measurements by DI(x-). The spectrum and correlation of f( ) are

related to the spectrum and correlation of Ui(x) by 2.2 and 2.3. ,-- first calculate v.('T), te 'auto-correla-

tion' of the kernel K.

. (s;s')fr - sl <

K('s o otherwise

0 (T) f fKrs) g(rs + 7) dV(s)

3 f f 8 (s';s)8(s, +;s+'r)ds ds 2

3

S(T: ; T) (2t-; 1) -2,t<, <2t 3.4

S(k the power sensitivity specuum of i is the Fourier transform of Ob(T)

S(k) = 7(r t I2. [ 2 le-j dVCr)

sin k 1 2' =4 C-..-..

k3
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The response of the hot-wire is uiform for k, and k, and it is poor for large k3-t. The graphs of

ffK(')ds ds2, ff T/(r) d7-dr2 , and s(k) are dre.li in Fig. 1.

The relation between P,,(k) and E,,(k) is given by 2.3

/sin z
r1(k) E,1(k) 3.5

I k Ek)

277(k 3  k 2 + k ,for

isotropic turbulence (3.2).

1,(k 1) is the 'one-dimensional' spectrum of the mapped field.

P, (k -ffl, (I k)dkk 3

1 .1 sin kl I EMk.
:.!ff( )=M+ k dk~dk3  .5

let 0,-'k 2 +krand k3 be the new variables.
2 3 3

r 2 sin k I dk E(k)

k _A)2 -3 ,_a 3do-

1 0 IVk.i-kzIEk h
" ) T -(k )dk 3.5b

where
2(a) sin

77 0 y / 3.6

IF(a)-1 for a<<

-for a >>I
a

W(a) has been numerically integrated and its graph is drawn in Fig. 2. Comparing 3.5b and 3.3 we 6ee that

for small/ the measured 'one-dimensional' spectrum r(k,) approached the true 'one-dimensional' spectrum

E,(k 1 )except for a factor 41' which is the steady state hot-wire response. For large 1,

,(k,) 00 E(k)
f~ k 3  kz-qAj d .

The squared output of the probe is contiraously increasing with increasing length of the hot-wire; for the

limiting case of infinite wire length the squared out-put per unit length tends to a limit.

kC Ek) dk
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For this limiting case the integral equation can be solved explicitly (see Appendix)
2k dk2, f ,"(k)

E(k)k =k, k k- 1,-k) 3.8

Also
E_() 1 E E(k)

(, - k, -- -k - (:dk

k ' 1J 2

I

integrating first with respect to k; then integrating twice by parts, we get

E, (k,j) = ee 3.9
fk

We see that either the 'three-dimensional' spectrum or the true 'one-dimensional' spectrum can be re-

covered from the spectrum measured by a hot-wire of 'infinite' length. (By 'infinite' length we mean a

length much larger than any scale of tu:bulence). For this limiting case length to diameter ratio of the hot-

wire is large and the temperature distribution becomes strictly uniform and independent of the operating

conditions, as we have assumed here.

If E(k)"k- exp [

then E,,,,)"- exp and f(r) = [.. -k]

where ko is a constant. In this case there is no relative distortion of the 'one-dimensional' spectrum or

the longitudinal correlation measured with a hot-wihe of finite length. Calculations show that

F-1 (k1) <174VE,k,) =2- erf(ko,) < 1

= I for kot << 1

The relation between true and measured intensities of turbulence can be put in terms of the scale of

turbulence.

measured < U, >at ar (7) L rf
- -. erf (k Ot) \LX)

tre <U 2 > k 02

where 4 1 f co rd45C--- a L~ V Odr

In these formula we have taken account of the fact that the steady state response of the hot-wire is 4, z .

8



3.3 Measurement of Lateral Velocity Correlation

The measured lateral correlation /3, (o,ro) is related to R,, (o,ro) by 2.2.

Substitute the value of Of(f), from 3.4

"( 1".'"f3  =fI <21 f  S(T,,; r) (21 - Ir 3 1) R,1( - d-r, d"3

Substitute the value of Rj'( r) from 3.1

>,ar,v) = < U" > av. r (2l - J) g (vr + r ) d 3.10

This relation was first derived by Skramstad 3.

If the wire length is much larger than the scale of burbulence, it may be considered effectively infinite, then

41 1(o,r,o) [4f2l g(rZ + r)dr ]<U2 > av.

"(r) 447 f+T( )r2 + ] <U  >av.

This integral equation can be solved and the true correlation recovered from the measta-ed correlation

(see Appendix)

1 d '6 /3(/7iTP)<U' > av,. g Nr =-- -r a
217tdr o r'+.

let e =r tan 0 ,then

1U v N $wz, (r seeO)d 0 3.12
<U217 , -v r h r o i

3.4 A Simple Approximate "Method of Hot-Wire Length Correction for LATERAL Correlation*

Measurements of lateral correlation g(r) are often made with hot-wires of inadequate resolving power.

We g;.e here en ,,ppzroimft and easy method for correcting the measured correlation taking into account

variable temperature along the length oi the hot-wire. riot-wire temperature distribution can be approxi
mated by a parabola 2/3 - 2/3 (s. /l) where s 3 in the distance from the center of the wire along its length.

The factor 2,3 comes from normalizing the average response to 412. The operatorji corresponding to this

*This was worked out and used by L. S. G. Kovasznay during the war but has not been published.

9
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hot-wire is

+Iff,:7+') 2 _2 (s/3--2 ] (, d~sfI += f- " 3 U 1 - + 9 - -)S ; 2 S

0b(r) is the 'auto-correlation' of the kernel of the operator,

¢() = 2.4 -12 (-;+12 " 3l 2"1715

= 1t(r) 8( ;2); (cf 3.4)

f, r p C) R,,(' - T) dV()

Substitute the value of R,,'(F- f') from 3.1

=<Uf > av. f21 lle-r;
-213

We normalize the measured correlation g1|o,ro) to unity for r -o and denote it by g(r)

g(r) =  tt(T)g(r 2 +0 3 d
-- f2l !!(-r) g (,r) d-r

let -' =-q; then

g(r) l ( g(r ) - ro1 2  5(7)) Ig (rZ + 77)]

0 20 2-

_ g(rz) - g (rl)

1 - g(o,I)

where f 41 11(17) rg(zJ -g(r" + -)] dr,

A i. 1) 2/T

2€
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412

then 21

Ag(r,) [ g(r 2)-- g (r2 + 42] 41 2

S[g(r2) - g (r2) +412)] x 0.1

g (r)- g (r +. 41)

g (r- g (r +.41)

For the purpose of calculating the small correction 6 g (rl) we have replaced the true correlation g (r2) by

the measured correlation g(r 2). The procedure for applying this approximate length correction to the

measured correlation is:

1. Plot the measured correlation g (r2) against r.

2. Divide the abscissa of this new plot in equal intervals of length .412 (wire length -21) and find

Ag (rl) (See Fig. 3). The corrected correlation*

g (r) =g (r) [ 1-Ag(o,1) 1 + Ag (r,1)

As examples of the corrections involved, we have taken three simple correlations and compared them with

measured correlations in Fig. 4. Length of the wire is equal to the microscale in all three cases, i.e.

21 -X and -2 = g"(o). This method of correcting the measured correlation is quite good if the length
TT

of the wire is not very much larger than the microscale of turbulence.

If rZ
ifAg (ril) dg II const., - g (') and g (r) = e

g d7)

In this case the simple method gives no correction for the measured correlation coefficient.

*If we asaume uniform temperature along the wire then Ag (rl) g (r) - g (r2 + .671")

11



According to this approximate method of correcting measured correlation, the relation between the

measured intensity and true intensity is,

measured < V' >avm "' -= 1 - Ag(o, I) 1- [1 -g(.412)]

true < u 2 >av.

g (.63 1)

4. APPLICATION TO SCALAR RANDOM (TEMPERATURE OR DENSITY) FIELDS

4.1 Terminology for Random Temperature or Density Fields

OCx) is the random temperature field, statistically homogeneous and infinite in extent. We assume

that < O(x) >a,. is zero. Let T ( ) and P (k) denote correlation and spectrum respectively of the

temperature.

Tc = < O ) O(x ) > v X =X +

P W -- q r T e) eA -? dl l

T (k) , )is k.dV()

P (k) is the spectral 1ansity of < 02(x) > ir, the wave number space. 'Three-dimensional' spectrum of

temperature G (k) is the spectral density of < 2(x) > with respect to wave number magnitude

G ,') = fP () do- (k)

T (ro,o) is the correlation usually measured. The 'one-dimensional' spectrum G, (k1) is the Fourier trans-

iorn of T (r,o,o)

T (ro,o) =r, k P k,, ., dk, dk3
-ik r

= fG, (k,)e dk,

where G,(i 1) = ff (k7k, dk,

If the random temperature field is statistically homogereous and isotropic

1 (k)
G, (k,) 411 2 Icf 2 3

1 G(k) dk 4.1= T--

12



The inverse relation is

dGl(k~) 4.
G (k) 

- 2k - Ik, = k

4.2 Hot-Wire Measurements of Random Temperature or Density Fields

A hot-wire of length 21 is set parallel to x3' It is operated at low current such that the heating due to

the current is negligible, and it acts as a resistance thermometer. If the current flowing through the

wire is constant the voltage fluctuation of the wire is proportional to temperature fluctuation integrated

along the length of the wire. The operator, 11 corresponding to the hot-wire is

,I 9(X) = fx 3 -L f f O() +9) 8 (st; s,)ds~dsds 3
X 3-1

Since the mapping operator is the name for temperature and velocity fields, the relations between

measured correlations and spectra and the true correlations and spectra are the same for the two cases,

except that one is a scalar and the other a vector field. If we denote by 2 /k1 ) the 'one-dimensional'

spectrum measured with a hot-wire of length 21, then (ef 3.5a)

sin k z -

yk1 k -Lj5~ ) p(k 1dk.dk3

for isotropic temperature field,

I sin k I G(k)
-f(1 , --- A2 -dkdk3

VT ki

let a k2. +k I and k3 be the new variables, then

4 s (s k I dk3  G(k)
~crd a 4.3

77 9T o 0 P 3  
3

CD 2__1I IGik) d=2i' f 1r (l k - 4.3a

kik

where W (a) is the function introduced in section 2.3.

For small ct, W (a) - I and comparison of 4.1 and 4.3 shows that the measured spectrum -y(k,)

approaches the true spectrum G 1(k ) except for a factor 2 which is the steady state retiponse of the

hot-wire.

Vor large 1, JIYL k k Z t LVPa.kk nz

G21 . (k) dk 4.4

i s- I
13



For this limiting case the integral equation can be solved explicitly (see Appendix)

G(k)k I k F k ]' kd,

li -? J -k 4.4a

Also

Ik rc G(k) dk

2 ki -k
I CDdk __ d)___

-f -_f
217 k, Ve -k2

Integrating first with respect to k and then once by parts we get

Gt(k,) 1 
(6 ) ed--ek 44

If

C(k) - k 2exp [-k ]

then

0

where k. is a consant, and for this case there is no relative distortion of 'one-dimensional' spectrum

measured with a hot-wire of finite length. Calculations show that

=I __ erf'lk) [exp(-l'kV)- 1]

4l2 G,(k 1) lko  <1

ifor l4 < < 1

4.3 Shadowgraph Method oi Measuring Correlation and Spectrum of Random Temperature or Density Fields*

p(r) is the fluctuating random density field, statistically homogeneous and infinite in exter t. We assume

that < p( I) >av. is zero. A port ion of the field, lying between x. -I and x + I and extending tt inifnity in

the other two directions, is removei' from the rest of the field. Parallel light after passing through this slab

of the field is incident on a photographic plate (Fig. 5). The light arriving at the plate will be more or less

intense acccrding to the distortion produced by density fluctuations acting as concave or convex lenses. The

shadowgraph depends on the position of the siah relative to x axis. A single shadowgraph gives the mapped

field for a fixed value of x3 and the complete mapping consists of a continuous set of shadowgraphs, one for

each value of x3.

* This is the extension of the wark reported by one of us in reference 9.

14



For small fluctuations of density, the refractive index 4 is a linear function of p, 4 = 1 + cp, where

c is a constant. If the photographic plate is placed closer than the first focal point there are no singular
points on the photographic plate. The light intensity B(x,, x2, x) falling on the plate compared to the

intensity B. of the incident light is 6

B B ~ V X 2 X X 1 Z p 2  
ph(xt, x , xs .. B -B(x,, x2, x3 ) 3xs+l z# ~ x

(x,, x,, x) = -  
( 3 1 -

2

We have omitted the dimensional constant in the above relation. Since we have assumed statistically

homogeneous field, the statistical properties of h (x, x , x) with x, and x2 as variables are independent

o. x . Let
3

( ,,~~~~ ,o=< (,, xx) h (x, + ,,x2 + 6., x) v

This correlation can be obtaiied from the shadowgraph. For this purpose two slides are made from the

z,hadowgraph and placed face to face. The combined pattern is the same as for a single slide if the posi-

tion of two plates is matched. If I (x , x , x ) is the transparency of either plate, the transparency of two

plates displaced from ihe matched position by amounts 6, and f2 is

t, =(x,, x,, xI ) t(x, + el X1 + xf )

Let t(x, x 2, x) = 
t 0 + A t (x I , x2, x3) where tois the average transparency. The fluctuating trans-

parency A t(x, x., x3) =ch(x,, x,, x3) where c is a constant, if the photographic process is linear.

Making use of this relation and taking averages of t2 we find,

<t,> -tz + c <h(x , x2, x3)h (x, +,, x+e, x3) >av.

tz + ,,4.6

We can determine /3(.e' 4, 0) by measuring combined transparency of two plates.

The operator II which maps the random density field p/x) into another random field h(x-) is, (cf 4.5).

h-) =it P('X) =f +I f _ fp(x- + 3) 8" (s) S) + S"(s,) 8(s,)dstds~ds 3

15



qb(r) is the 'auto-correlation' of the kernel of the operator II

tp(7) =1111f S" (s,)8(s) + 8 "(s) ¢s,) 8"4o +)S(s 2 +)

+ " (s 2 + ) 8 (st + 7), ds, ds2 ds3

8-7- )$82 '~. 8,,)+28 ",, 2-131 4.7

S() is the power sensitivity spectrum of,/ 1< 21

S k f 0(7) 1 _k 7dV()

-(k2 +k 2)
2  (sin 4.8

The shadowgraph method responds to second derivatives of the density field; this accounts for the factor

(k2 +kP 2. Since the light passes through a path 21 (which corresponds to a hot-wire of length 2,t in the(sink 12
previous example of velocity spectrum measurement) the factor 4 ( , appears in the sensitivity

k 3
spectrum.

The notation for correlation and spectrum of p x) is the same as for random temperature field
8 'x.) developed ;- Sectien A1, i.e.,

P (Tk) =817 f T (T)eiTk dV )

T( )= fP:-Ck),~ k' dVk)

and G (k) is the 'three-dimensional' spectrum of p (x)

G(k) = fP (') do(k)

If

then

I - ) sc) P, iF)

16



2 sin k 12
4 + k2 -k 3) P ()

for isotropic random density field

(k2+k2  (Sink 1 1 G(k) 4.10

and

S1fG(k) 2 2 sink 3l -ik. 4.
S=- - - (k +k') ( ) e d, k) 4.1

1 sn k 1 2 G(k)k 2 ei(k 1 ~1 +k 2 ) dk2  d

/3(, 0,o) = fff )T " + / 2) e k , AAA

sin k 2

If 1 is much larger than any scale of turbulence, then sin-k---- ) acts almost like a Dirac function, i.e. we
ca rplceG~k)y G______k_)  "

can replace- + and integrate with respect to k Under this assumption
and+k k3

_,, k 2) ( 2 +-k2) -i(k, I k , k
0)________A 4.12

Introduce polar coordinates,

,= cos ; , = Vcos

62=rsir ; k2 =v sin 'P

O00,6(r) =2 771l fo 3 G (V ) 1]o (vr) dr, 4.12a

and the inverse relation,

S -2 o - ,) Io (it) ,i 4.12b

The measured correlation /(r) and 0' G (u) are Foilrier-Bessel transforms of each other. For v<< 1;

zG(W,, v" making ihe first and the third moments of O(r) always zero. The relation between the conven-
tional correlation T (?) and the correiation of the shadowgraph is given by eq. 2.2

p( =fqjr) T d ),

Substitute 'P (T) from equation 4.7 and integrate with respect to a, and "r,

21 -8 2d -a- 3

4 Zf 2 2
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For isotropic density fluctuations

21 A2/ T 2r 413er + 2 f,; 21r3  -% T(4.13

/r2 f.' (2 1 - -r) T r' +-' d-

where A 2 is the bilaplacian in two dimensions for circularly symmetric case.

If 1 is much larger than any scale of density fluctuations, then

"-- r _4 ~o r 7 + "r3Z) dTr3  4.13a

/(r)
2 - Ar € (r) 4.13b

r2 log r is the elementary solution of bilaplacian in two dimensions 7.

If we assume that T(r) 1 then the solution of 4.13b i,'"" - ; e>0

r r >

'(r) 0 f /3( )(rz 2 z -2r cos e)log VrZ + ez -2recos f0 ded

We note that first and third moments of /3(f) are zero, using this fact:

ONr) f- "" "fr )e[(r' + f)og r + 2]df+I
"f r f() [(r' + e')loge +r2 ]df

41r 41

substitute for q(r) from 4.13a

0(r) =-4 f T(Vr2 +) dT
o

f jm /3'~) + e) (log~ f-og r) + r' -f] df
41r

18
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This integral equation can be solved for T(r) (see Appendix)

Ss 4 s
r'T(r) = - - y= [ s) +q S r

217 r

- f 08/(e) e:[(3," + s2log e -log s) 2s- 2 ] s
817T r s

integrate first with respect to s.

1 sds
r 2 T(r) - fr c8(e) d ffr [(3s2 + 2)(log -logs) +2s' -2 e2l] s d

17T r r

_1) fo 8(15) e X( , r) d 4.14

r-' r

where

1 ( sdsX(e, r0 - rZf [(s )lg -log s) +2s2 -2e',] V Zr

r

In order to get a feeling for the correlation measured from the shadowgraph, we assume that

X2 k2
G (k) k exp [ - ] then it follows that the conventional correlation

T(r) "- exp [-(r/Ap P ]

and
r _ r _ r/?(r) [ (i - X, 2 v,

2 T(o)

where X -T (o and X is a characteristic length similar to turbulence micro-scale, we may call.

it density micro-scale. These correlations are normalized to unity for r =o and compared in Fig. 6.

We denote by -1(k1 ) the 'one-dimensiobal' spectrum of the mapped field.

1 (k1) =f fF(k)dk2 dk 3

1 sin k 1 G(k)
-f f(k +k2)Z(2 .Z-.. .- dk

For the case of 'infinitely long' light path, we can simplify this expression (cf. 4.12)

k, f(k +,)G("kZk2)dk1 2 2

. lfO k3 G(k) dk
k vk -k2ti 4.16
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Yk,) is the 'one-dimensional' spectrum of the shadowgraph for the limiting case of 'infinite' light

path. This spectrum can be measured by scanning the shadowgraph with a beam of light. In the case of

lot level wind-tunnel turbulence wc can assume that density , Rttern is carried along by the mean stream.

Parallel light after passing through the density field is allowed to fall through a narrow hole on a photo-

cell and the output of the photo-cell is analyzed by electrical filter. Usi, 6 the relation I - Ut where U

is the mean velocity the measured time spectrum can be converted into space spectrum. 'Three-dimen-

sional' spectrum can be recovered from the measured spectrum by solving eq. 4.16 (see Appendix).

2 kdk
G(k)k.k = k i 'iTk [ k y('k)I' ___T 41

PT, 'k ,()] f/k2 _k2  4.17

Also

Gk, I ) -dk
'2 k k

I, W= dk [ C ,O ]1
1 ~ ~ C dd (4 ]~Sk--5 d# 4.18

integrate first with respect to k

01 ¢dk
h kl I I I

lik, = Ic , T'#L- Y c'- - 4 4log -k jd 4.19

We can also use Schlieren instead of shadow method to measure correlation and spectrum o; random

density field. If we assume that the light path is larger than scale of density fluctuations thtn true corre-

lation and spectrum of density fluctuat'ond can be recovered from the measured quantities in the same way

as in the case of shadowgraph.

5. Calculation of Iiot-Wire Length Effect for Some Simple Velocity and Temperature Spectra

In order to get an idea about the hot-wire length effect we assume that E(k) = k-n. The 'one-

dimensional' velocity spectrum measured with a hot-wire of length 21 is compared with true spectrum in

Fig. 7. Explicit calculations are made as follows:

r (k,; n) =I' f V /(l V -kz,)k-(n +3 )(kz.-kz)dk

l2 f 0* k-(n+ 3) (k2 k2)dk for lk, <1
k 

s12 oi (1+ s)- ;s k2

12 k-n
B 2) 5.1
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for

1k, >, J(I 'k. - ) 1

and

F,(k1 ; n) =1 f K "(n+3) VkZ-k 2  dk

1k-(n+±i) , &ds

2 a (1+s) + 2

1 k (n+1) 3 n+1
B(-, -) 5.2

The point of intersection of asymptotes 5.1 and 5.2 is

2B 4' --n--
A= 21ki 2 2

( (n,2)
2'

2 53

2

The graph of equation 5.3 is drawn in Fig. 8. Th; complete calculation of '1(kl; 1) can be made by

taking it in the form

1 1 sinkl (k2 +k2)
f fi 4 3  ( 2 +k 2 +k A 2 A3 5.43 7T k (k, + k 2 + k '  s.V2

1 sink l dkdk3  k sink 1dkdk
-f) 2I-3-Lj f;) 2  2

27T k (k 2 + k2 +kP)3 /2 27T~ k3  (k2 2k~ z~l

I ki '1

271 67T k 5.5

where

sin ki 3, dk 3dk 3, k - ck 2 +kz + k:"
sin L dk

=2 - +k
3 kk

We evaluate this integral using Parseval's relation. Take Fourier transforms of ( I1z. 2 and

+ and integ-,ate the product of the transforms with respect to the variable of transformation.

21
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1=2121 -21-Ix~id
-2 =. 2 '2T ~ x(jxk d

= 7T(21/k2 - 1
/k3 + 1

1k exp [-21k])
I I I I

Substitute the value of I in 5.5

1 1
r1k,; 1) --= 3 ; k2xp [ -21k,) 5.6

F, (k,; n) for n =3,5,7 can be obtained by differentiating r, (k; 1) with respect to k,

6r, (k,; 1)
3 k5k, , (k,; 3) 5.7

The ratio of measured spectrum F (k ;n) to the true spectrum at the point of intersection of the two

as) mptotes of P (k ;n) is plotted against n for n = 1,3,5.... in Fig. 9. A smooth curve is drawn through

tese points. Knowing the asymptotic value of r; (k ;n) for 21k<< 1 and 21k >> I and its value at the

intersection of the asymptotes we can drav a pproximately the complete curve of 1 (k 1n) for all n. Graphs

of the ratio of measured spectrum to the true spectrum are drawn against the non-dimensional variable

21k in Fig. 10.

If we assume that G(k) : kn then the 'one-dimensional spectrum of temperature measured with a hot-

wire of length 21 is
CO

,(k,; n) = 21' fk, IW( 1 "0 k- ', )1kn+I d k

Z 212f k k-(n+') dk for 1k, <<1

12
S2- k "n  5.8
n

1
For large k,, W (1 k ) k - k2 )

" (n+)

and Y, (k,; n) 2l Jk 2, 2dk

+ s' ds

I k I f 1 ,n+ 2
0

Z Ik; (n +) B I nt 5.9

2 2
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The point at which asymptotes 5.8 and 5.9 meet is

A =21k, nB (--;2
2 2

n+t

22-" /n+2

2

41 3 F ( n +i
(2) F-

F(-) 5.10

Equations 5.3 and 5.10 are identical except for a factor of 2. Graph of equation 5.10 is drawn against

against n in Fig. 8.

The complete calculation of y, (kI; 1) can be made by taking it in the form

1 in k3nk 2 dd aY, ( k, 1) =7 T N k , + k ' + k 2] '  3 "
r k3  2k+k k 3~

21 1 1
=2 1 + I exp [-21ki ]k , k 3  k3

as evaluated previously.

Y, (A-;n) for n = 3, 5, 7 .................... can be obtaived by differentiating )',(k1; 1) with respect to k

3- kkl I) k,;3?',k--;i) - - 3 k y(k 1 ; 3)

The ratio of measured spectrum -y, (k , n) to the true spectrum at the point of intersection of the two

asymptotes of -,t (k ; n) is plotted against n in Fig. 9. -Y, (k,; n) for values of n other than 1, 3, 5 .....

is obtained by extrapolation as in the case of velocity spectrum.

Graphs of the ratio of the true spectrum to the measured spectrum a. .. aWU against the non-

dimensional variable 21k, in Fig. 11.
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APPENDIX

Solution of th- integral equations

()= 44 ¢() d

x xA

and p(x) f q( x + e ) d6 A2

and 0

Equation A2 can be reducted to Al by the transformation y = 
2 +fl

For the solution of Al, let 6 =xcsc 8

1
then 7/2(x) p-o/z c(xcsc 9) d

This equation can be reduced to Schlbinlich equation by the transformation
I

x -y

l(L)p('y) ad t j (y)

y

=y) ;7Vq ny Si, G)d

Solution of Schlomlich equation is 8

2 2 77
= = +-y y2 Y (ysin 8)d 9

or in terms of the original variables

2 2 t xCsc 0 (xcsc0)f0d€c t~) =[xqJ~x] -_x Isctxsc).c 2 d
77 X =CD

2 e
OW - A3

Alternatively,

p (() de

x
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can be solved by the transformation

1

1
I

Vx

1

Substituting these in our equation we get Abel integral equation.

Its solution is 8 :

(f x,) d )( de,

V11 7 dx 0 //x-

or in terms of original variables

-22 d OO
(x) -xZ xf

IT dx x A77 T7F 44
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Figure 3 -Illustration of simple approximate method of
correcting lateral correlation.
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Figure 4 - Effect of finite resolution on lateral correlation
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Figure 5 - Optical arrangement for taking shad'w pictures.
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Figure 7 -Effect of finite wire length on velocity power spectrum.
True spectrum assumed E,(h,)_h- n (in figure n= ,

at intersection of asymptotes 21,k, = -A-).
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